Electromagnetic Calorimeter of Super BigBite Spectrometer at JLab Hall A

A. Shahinyan A.Alikhanyan National Science Laboratory

Contents

- SBS
- Experiments
 - 1. GEP5
 - 2. GMN
 - 3. GEN2
- SBS ECAL
- Summary

Super BigBite Spectrometer

Super Bigbite Spectrometer

- Magnet: 48D48 46 cm gap, 2-3 Tesla*m
- Solid angle is 70 msr at angle 15 deg.
- GEM chambers with 70 μm resolution
- momentum resolution is 0.5% for 5 GeV/c
- angular resolution is 0.5 mr

SBS Layout and Parameters

Parameters of SBS

	$\theta_{central},$	Ω ,	D,	Hor. range,	Vert. range,	
	degree	msr	meter	degree	degree	
Solid angle	3.5	5	9.5	± 1.3	± 3.3	
	5.0	12	5.8	± 1.9	± 4.9	
	7.5	30	3.2	± 3	± 8	
	15	72	1.6	± 4.8	± 12.2	
	30	76	1.5	± 4.9	± 12.5	
Resolution:					<u>.</u>	
Momentum => $rac{\sigma_p}{P} = 0.0029 + 0.0003 imes p [ext{GeV}]$						
Angular =>	ar => $\sigma_{ heta} = 0.14 + 1.3/p$ [GeV], mrad					
Momentum acceptance =>	$oldsymbol{P}$ range fi	rom 2	2 - 10	, G	$\mathrm{eV/c}$	

Experiments

GEP5 - Large Acceptance Proton Form Factor Ratio Measurements at 13 and 15 (GeV/c)² using Recoil Polarization Method

GMN - Precision Measurement of the Neutron Magnetic Form Factor up to $Q^2 = 18.0 (GeV/c)^2$ by the Ratio Method

Transversity - Target Single-Spin Asymmetries in Semi-Inclusive Pion and Kaon Electroproduction on a Transversity Polarized ³He Target using Super BigBite and BigBite in Hall A

GEN2 - Measurement of the Neutron Electromagnetic Form Factor Ratio $G^n_{\ E}/G^n_{\ M}$ at High Q²

GEP5 - Large Acceptance Proton Form Factor Ratio Measurements at 13 and 15 (GeV/c)² using Recoil Polarization Method

GEP5 Layout

GMN - Precision Measurement of the Neutron Magnetic Form Factor up to $Q^2 = 18.0 (GeV/c)^2$ by the Ratio Method

GMN Layout

GEN2 - Measurement of the Neutron Electromagnetic Form Factor Ratio G^n_E/G^n_M at High Q^2

SBS ECAL

- ECAL Blocks
- ECAL Modules Gluing process
- Test ECAL Blocks
- ECAL Counters
- ECAL C16 Test Results
- ECAL Frame
- HV System

The ECAL blocks under heat treatment

Irradiated (14 kRad) at ISU

after heat at 200°C, 2 hours

after heat at 225°C, 1 hour

ECAL blocks

Gluing procedure for lead glass and light guides

Gluing of the light guides air bubbles problem and solution

ECAL 16

ECAL 16

C16 Beam Test Results

- ➤ Test done between April 30th at 17:00 to May 2nd at 10:00 am on 2015
- Beam energy = 2.056 GeV, 15 cm LH2 target. (10 deg, 6.1m) 0.8Krad/hr
- DAQ system used RHRS scintillators as trigger and readout the C16 in FADC250

Cool air blow in back to cool PMT

1/30/2019

ECAL Frame

Super Modules in detector frame

Detector frame assembly includes C-channel for adjusting position of Super Models

Thermal insulation with Foam Glass blocks

ECAL super module

Each super module is designed to contain 9 lead glass blocks and support attachment of 9 boron silicate glass light guides connected to 9 photomultiplier tube bases.

Really View

Schematic View

HV System for SBS/Ecal

ECAL HV system, consist 10 crates LeCroy

Repairing of defected modules

Karen Ohanyan is repairing one of the broken modules

Examples of defected modules

Summary

- Mechanical design Ecal frame –completed
- Super module mechanical design-completed
- 192 each super module mechanically assembly
- 1000 each lead glass and light guide- glued
- Ecal frame ordered

Thank You

CUNPZUYULNLCZNLU